Product Description
3 Axle Factory Price for 50t – 60t Low Bed Truck Semi Trailer Heavy Duty 3axles 60ton Hydraulic Ladder Lowboy Truck Semi Trailer
MAIN PERFORMANCE
Product Specification | ||||
1 | Type | Semitrailer | ||
2 | Product Name | Low Bed Semitrailer | ||
3 | Dimension | 13000x3000x1600mm | ||
4 | Tare Weight | 9270kg | ||
5 | Payload | 42t | ||
6
|
Running System | Axles | FUWA , BPW, CZPT brand,13t/16t/20t Good quality axles | |
Suspension | Tri-axle 10-pcs leaf spring suspension with equalizer beam (we can choose the Air suspension depend on customer requirement) |
|||
Tires | Linglong, Double Coin, Triangle brand 11.00R20/8.25R20/12.00R22.5, 12unit | |||
7 | Ladder | Manually operated or Hydraulic type | ||
8 | Braking System | Dual lines pneumatic brake system, WABCO Emergency Relay Valve; KORMEE ABS braking system |
||
9 | Frame | Main Beam | Q345B steel,Height 500, upper 16mm, lower 18mm. Mid web 10mm |
|
Cross Beam | Mild Alloy Q235 | |||
10 | King Pin | Size: 50# (2”) or 90#(3.5”); Type: welded or assembled | ||
11 | Landing Gear | FUWA, JOST Brand Single side operation or double side operation, Static capacity 28Ton |
||
12 | Electrical & Paint | Electrical | Rear light, rear reflector, turn indicative light, side reflector, fog lamp, number plate light | |
Lights & Reflectors | 24V, 7 lines | |||
Painting | zinc-rich primer and modified urethane topcoat as customers’ choices. | |||
Accessories | TOOL BOX (BOX ONLY)—PROVIDED WITH THE TRAILER TWO SPARE WHEEL HOLDER(WINCH),BUT NO SPARE TYRES |
I.The Application and the Technical Highlights:
—The low bed semitrailers are mainly suitable for the MID/Long distance transportation of mechanical equipment, large objects, highway construction equipment, large tanks, power plant equipment or machine, and all sorts of steel products.
—The low bed semitrailer can bed divide into flat bed low bed trailer, concave low bed trailer, tyres appear low bed trailer, tyres covered low bed trailer. The concave low bed trailer structured with tyre appeared style, the height of the cargo’s carrying platform from ground is 900mm.-Low platform makes the stable transportation.
—The chassis is ladder type,longitudinal beam section is H-shaped. It has good rigidity and high strength.
— High Quality Body and high-10sile steel for heavy loading capacity
— BPW, CZPT or Certificated Chinese Axles
—ABS brake system
—WABCO Vehicle Control System
—JOST ,FUWA or Chinese brand parking leg and king pin
—Air and Mechanical Suspension
—Strengthen the Chassis Instructure
II.The Advantage
***Frame:using the advanced assembly welded equipments to weld the space frame structure which formed by welded-type longitudinal beam (made of 16Mn steel plate) and the whole Run-through cross beam.Our consider the strength,stiffness and toughness of the frame and design the frame is strong enough to carry the heavy cargo.
***Suspension: Lightweight design.High-strength material with strong carrying capacity, remarkable wear resistance property and performance stability and long service life.Wheel Track adjustable easily and accurately, which protect the tires from abnormal wear.Passed strict bench testing and road testing.
***Axle:Specially processed one-piece spindle of high quality low alloy steel, which possesses strong loading capacity, long life, light weight and remarkable performance.High machining precision of the braking system makes the braking performance more stable.
III.Advanced Process
~~~Design Drawing: Before production, we will sent the design drawing to our customer to confirm the detail of the vehicle. We hope we can supply the most suitable product to our customer.
~~~Cutting and Welding: The I beam cutting adopt the Computer Numerical Control Plasma Cutting Machine. The I beam welding adopt the Gantry Main Sill Welding Machine.
~~~The Beam Welding: Main beam and side beam all use I-shaped beam, it can ensure the trailer more durable.Reinforced rear plate can avoid the rear plate was broken away when heavy duty machines climbing the ramp of trailer.
~~~Surface Treatment: In order to remove the rust of the trailer body, we use the sand blasting to retreat the surface of the trailer.
The trailer can have the beautiful appearance,the painting will be coating evenly, firm adhension, gloss more durable
~~~Painting: One layer of the anti-rust painting, 2 layer of painting
~~~Test: We will test the quality of the trailer before delivery.
IV.The Detail of the Low Bed Trailer
V. Classification Of The Low Bed Trailer
VI. Guarrantee For The Parts Of The Low Bed Traielr:
ITEM NAME | WARRANTY | ITEM NAME | WARRANTY | |||
MAIN FRAME | FRAME | 1 YEAR | RUNNING GEAR | AXLE | 6 MONTHS | |
SUSPENSION | 6 MONTHS | AXLE BEARING | 3 MONTHS | |||
KING PIN | 1 YEAR | WHEEL HUB | 3 MONTHS | |||
BALANCE ARM | 3 MONTHS | |||||
ITEM NAME | WARRANTY | ITEM NAME | WARRANTY | |||
BRAKING DEVICE | BRAKE DRUM | 3 MONTHS | SUPPORT DEVICE | LXIHU (WEST LAKE) DIS. GEAR | 6 MONTHS | |
BRKE CHAMBER | 3 MONTHS | SPARE WHEEL CARRIER | 6 MONTHS | |||
AIR RESERVOIR | 6 MONTHS | |||||
ITEM NAME | WARRANTY | |||||
OTHERS | LEAF SPRING | 3 MONTHS | ||||
BRAKE CHAMBER DIAPHRAGM | 3 MONTHS | |||||
EMERGENCY RELAY VALVE | 3 MONTHS | |||||
BRAKE SHOE | 3 MONTHS | |||||
RELAY VALVE | 3 MONTHS |
VII. DEALING PROCESS
1. You send us an inquiries on your desired trailer through our contact information.
2. We shall reply you in 12 hours after we received our inquiry.
3. We will negotiate the detail of the trailer on your requirement.
4. Confirmed on the tech data.
5. Sign contract.
6.30% down payment or LC issuing.
7. Production
8. The Manufacturig process with updated news.
9. The Production completement.
10.Balance payment .
11.Arrange Shipment and Custom Clearance
12. A/S service for 1 year.
Worm Gear Motors
Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm gear
In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.
worm wheel
In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.
Multi-start worms
A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
CZPT whirling process
The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.
Common tangent at an arbitrary point on both surfaces of the worm wheel
A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
Calculation of worm shaft deflection
There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.